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[i] We consider diffusion of outer zone radiation belt [3] Inside the plasmasphere, waves cyclotron resonant
electrons by chorus waves. Quasi-linear diffusion with radiation belt electrons occur primarily as whistler
coefficients valid outside the plasmasphere have only been mode hiss. There the plasma frequencyfpe is large compared
calculated recently, and indicate that the energy and cross to the cyclotron frequency fce, resulting in a pitch angle
diffusion rates can be comparable to that for pitch angle diffusion rate much greater than the energy diffusion rate,
diffusion. Proper solution of the diffusion equation for with the cross diffusion rate intermediate between the two
phase space density must therefore be based on the full [Lyons, 1974b]. Thus pure pitch angle diffusion combined
diffusion tensor, but this has been plagued by numerical with radial diffusion is a reasonable approximation there;
problems associated with the large and rapidly varying further simplifying the pitch angle diffusion to a loss rate
cross terms. To circumvent this, techniques are developed yields a successful description of the inner electron radiation
for transforming to variables in which the cross diffusion belts, at least during quiet or moderately disturbed condi-
term vanishes. A model calculation shows significant tions [Lyons and Thorne, 1973]. Outside the plasmasphere,
diffusion of phase space density at L = 4.5 from 0.2 MeV however, such models have not been able to reproduce the
up to a few MeV in less than a day. Citation: Albert, J. M., localized high energy phase space density peaks frequently
and S. L. Young (2005), Multidimensional quasi-linear diffusion observed to develop during the recovery phase of magnetic
of radiation belt electrons, Geophys. Res. Lett., 32, L14110, storms [e.g., Brautigam and Albert, 2000; Shprits and
doi:10.1029/2005GL023191. Thorne, 2004]. It has been argued that the condition fpe -

fee enables storm-time enhanced whistler mode chorus to
drive rapid electron acceleration [Summers et al., 1998;

1. Introduction Home et al., 2003, 2005; Albert, 2005], which could account

[2] A standard approach to studying the dynamics of for the energized population. Although the development of
energetic particles in Earth's radiation belts is via a quasi- chorus waves involves strongly nonlinear processes [Sazhin
linear diffusion equation, which describes the phase space and Hayakawa, 1992], we assume that quasi-linear theory is
distribution function suitably averaged over gyro-, bounce, a meaningful description of the effect of fully developed
and (longitudinal) drift frequencies. Electromagnetic waves chorus on the high energy population. Suggestive results
resonant with these frequencies lead to diffusion in the three have been obtained from a one dimensional energy diffusion
adiabatic invariants associated with them; other terms due equation averaged appropriately over cNo [Summers and Ma,
to, e.g., Coulomb collisions are easily incorporated as well. 2000; Summers et al., 2004; Home et al., 2005; Li et al.,
In principle coupling occurs between the diffusion in all 2005] but studying this process in detail requires treating the
three invariants, but in a nearly axisymmetric dipole the full velocity space diffusion equation. However, straightfor-
diffusion in the third invariant J3 (associated with waves at ward solution of equation (1) is elusive, even when the usual
the drift frequency) is largely decoupled from diffusion in Jl conditions for local, linear numerical stability are well
and J2 (driven by waves resonant near or below the much satisfied, because of the large and rapidly varying cross
higher cyclotron frequency). However, the diffusion in j 1  diffusion coefficient. (See Albert [2004] for a review of
and J 2 is highly coupled, according to the formulation of previous approaches.) To overcome this, new variables are
Lyons [1974a, 1974b]. After bounce averaging, this treat- constructed for which the cross diffusion term vanishes, and
ment gives diffusion coefficients for equatorial pitch angle standard finite difference techniques are applied to the
No, momentum (or energy), and cross diffusion DOp, which transformed diffusion equation.
can be recast in terms of the adiabatic invariants [Schulz and
Lanzerotti, 1974]. Then the diffusion equation takes the 2. Eliminating the Cross Term
form

[4] In general, when transforming from (J1, J2) to new
Of = D Of Of) variables (Q1, Q2), the diffusion matrix

-= U aD12 0 1Tt J O.i- 0D " = [D1 2 D 12j (2)
+ ( DJ2 -ýf-l + D22 af2 ý +l a• D33 af3. (1)D1D2

OjJ2  OIt J2) becomes [Haerendel, 1968; Schulz, 1991]

Because of the decoupling, the J13 (or L or "radial") 11/J 119J2 OQ2/OJ]
diffusion is relatively easy to treat, even if it is large. = LOQi/J1  OQ9/O1J2 D, [OQI/OJ9 Q2/OJ (3)

19Q2/09J1  0Q2/0J2  O'Q1/09J2 49Q2/09J2  (3

This paper is not subject to U.S. copyright. It is desired that the cross diffusion terms in the new
Published in 2005 by the American Geophysical Union. variables vanish. It will be assumed that the diffusion is
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Daoao D J[/ 2 [6] A second condition is required in order to determine
the two slopes. One alternative is to impose S1 S2 = -1, so

Sr that the families of constant-Q1 and constant-Q2 curves are
orthogonal in the (JI, -J2) plane; this is equivalent to taking

1 .0- 10-4 the constant-Q curves parallel to the eigenvectors of the Djj
matrix. A simpler approach, adopted here, is to specify Qi

1j 5 as a convenient function of J1 and J2, which determines S1
. and thus S2 from equation (5).

0.11 o-6 [7] As a simple illustration, take the elements of Djj to be
0 ,constant. The Green function solution of the (JI, J2) part of

equation (1), for a distribution initially localized at (Jlo, J 20)

IDIaol/ sign(D 0o, 10-7 far from the boundaries, is

U •.. •i" 10-8 exp[- (D228I2 - 2D 2lJlIV2 +DIi8)/atA]/atv'X,

"-> 1.0 '• • [ 10-9 where 8Jl = J, - J1 o, 8J 2 = J 2 - J2o, and A = D11D 22 - D12.
> 10,Choosing Q, = J2 leads to Q2 = Ji - (D 1 2/D 22 )J 2 and G =

10-10 -1, as well as D, = D22 and D 2 = DnI - D212/D 22. Then
it may be checked that the Green function solution of
equation (7), namely exp(- Q2/4DIt - Q2/4D 2t)/
47tt/jIT2, is the same as the expression above.

0 30 60 90 0 30 60 90 [8] Choosing Q, to be the equatorial pitch angle oto, the
a0  ao equation for constant-Q2 curves can be written as

Figure 1. First three panels: inverse timescales from quasi- dE DAE
linear diffusion coefficients, in units of s-1, for electrons at dZ Do' (8)
L = 4.5 based on a global model of storm time whistler-
mode chorus waves. The last panel shows where the cross and the transformed diffusion coefficients simplify to
diffusion coefficient is positive (red) or negative (blue).

truly two dimensional, so that det(Djj) > 0. This is strictly D, = DN,,, D2 = ,--) (DE- D--- . (9)

true for the bounce-averaged quasi-linear diffusion coeffi- /

cients considered here, though barely so if the resonances The (cso, E) diffusion coefficients and (DIl, D12j D22) are
are highly localized in both wave normal angle and latitude related by equation 3 so that, e.g., Do (Aa0)/At rather
(as can occur for particles with n = 0 resonances only) than (pA to)fAt as by Lyons [1974a, 1974b]. As above, the

[Albert, 2004]. expressions for the quasi-linear diffusion coefficients

[5] The slopes, dJ2/dJ1, of curves on which Qi and Q2 guarantee that 02 is positive.

are constant are given, respectively, by

I Qi/OJi _ Q2/0JI 3. Performing the Transformation
S T= S2 = - _(4)___a

Qi/OJ2' OQ2/OJ 2 4 [9] The diffusion coefficients (D~0 , D•/p, D,/p2, all
with units of s-1) due to storm-time chorus were calculated

From equation (3), the requirement Db2 = 0 can be at L = 4.5, using the wave models of Horne et al. [2005] and
expressed in terms of the slopes as the computational methods of Albert [2005]. In these wave

SIS 2D11 -(SI +S 2 )D12 +D 22 =0, (5)=

and the nonvanishing diffusion coefficients are . ._._._._._._._._...

= (0(Q1/8J 2) 2 (S 1D -2SIDi 2 +D 2 2 ),

D2 = (0Q2/0J2)2 (S2D11 -2S 2D12 +D 22),

which are both positive since DI ] D22 > D212 [Albert, 2004]. t_
In the new variables, the (Ji, J2) part of the diffusion
equation simplifies to 0.1 .......

0 15 30 45 60 75 90Of= -- GD1 of + ' GD2 of (7) aoat Gd \ Q1 0Q 52 ý2/

Figure 2. Curves of constant Qi =_ ot (dotted) and Q2
where G = det [(/(J1, J2)/O(Qi, Q2)] and there is no cross (solid) corresponding to the diffusion coefficients of
diffusion term. The radial diffusion term, if included, is Figure 1, constructed so that the cross diffusion coefficient
unchanged. vanishes.
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D, D2 0.5 MeV 2.0 MeV
1.2 !2 1.0000 lo-
1.0 10 -4 0.1000 10-3

0.8 10-5 0.000 -4 10- '$

3y 0. 6 o 6  ir
0 0.0010 10

0.4 10-7 x 6

0.2 0 10I

0.0 0 30 60 90 0 30 60 90

0 30 60 90 0 30 60 90 0o to

Q, Q1 Figure 5. Electron flux as a function of N0 at E = 0.5 MeV
(left) and E = 2 MeV (right), at t = 0 (blue) to t = 1 day

Figure 3. Diffusion coefficients D, and D2, in s- 1, for the (red), at intervals of 0.1 day, corresponding to Figure 4.
variables QI and Q2 determined by the curves of Figure 2.
QI is chosen to be ot0, and the constant-Q2 curves are and reflect the artificially sharp cutoffs used to model the
labeled by the value of lOglo(E/0.2 MeV) at Cto = 900. frequency, wave normal angle, latitude, and local time

distributions of wave power. Note that the cross diffusion
models, the wave power spectral density was taken to be the coefficient, D,,p - (AooAp/At), can have either sign.
product of truncated Gaussians in frequency and wave [io] The diffusion coefficients were used to numerically
normal angle (tan 0) in each of three different local time trace curves of constant Q2 in the (ot0, E) plane, shown in
sectors. In the nighttime sector model (2300-0600 MLT), Figure 2. (Since computation of the diffusion coefficients is
the waves lie between 0 and 150 latitude; the corresponding quite demanding, equation (8) was integrated by interpolat-
range of fplfe is about 3.4 to 2.5. The waves are only ing a table of precomputed values; this also tended to
present between 15' and 350 latitude in the prenoon sector smooth the discontinuities.) Diffusion in Ql(= 0Oo) proceeds
model (0600-1200 MLT) and 100 to 350 latitude in the along curves of constant Q2, which are roughly curves of
afternoon sector (1200-1500 MLT); the corresponding constant energy (corresponding to the approximation of
ranges offo~fe are ,-,3.0 to 0.9 and 5.9 to 1.4, respectively, pure pitch angle diffusion). Diffusion in Q2 proceeds along
The tan 0 distribution was further restricted to less than curves of constant QI, which reach large values of energy.
0.9 times the resonance cone value, and resonance harmonics [ii] So far, the actual values of Q2 have not been
up to n = ±5 were included. The appropriately weighted, specified; they may be assigned in any smooth way that
combined diffusion coefficients are shown in Figure 1, labels the curves on which they are constant. From Figure 2,

it is natural to associate with each constant-Q2 curve the
value of E (more precisely, logl0 [E/0.2 MeV]) near 00 =
900. Intersections of the constant-Q, curves and constant-Q 2

f(QlQ 2) f(ao,E) curves establish the correspondence between coordinates
0 2 5.0 (Qi, Q2) and (N0, E). To evaluate D1 and D2 it is also

1 1.0 too necessary to evaluate the partial derivatives relating the old
tl 0 and new variables. A general procedure is to trace curves

"•0.2 with constant but slightly differing values of Q2, which
F_ 2 5002

0 11•• .02
"" 00.2 - a 0 =30.0 a0=70O0

~0 ~ 1 0.2 U) ~ o250 21-4 
10

10_3

0-1 1.0

I 1o-5  t ....."-0 0.2 2 --
0 306 90 0 306090 0.1 1.0 10.0 0.1 1.0 10.0

0, ao E (MeV) E (MeV)

Figure 4. Phase space density (left) (QI, Q2) and (right) Figure 6. Electron fluxj =p 2 fas a function of E at (left)
A0oo, E) at t = 0, 0.1, 0.5, and I day, from a numerical N0 = 300 and (right) 00 = 700 at t = 0 (blue) to t = 1 day
solution to the (Q1, Q2) diffusion equation. The lower (red), at intervals of 0.1 day, corresponding to Figure 4
boundaries in both columns correspond to E = 0.2 MeV. (solid curves). Also shown are results at t = 0, 0.1, and I day
The initial and boundary conditions are discussed in the obtained by neglecting cross diffusion D(op (dashed
text. curves).
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